Combinations of L-functions and their non-coincident zeros for Re(s)>1
نویسندگان
چکیده
The purpose of this note is to build upon work Booker--Thorne and Righetti concerning zeros algebraic combinations $L$-functions. Namely, we show that two generic functions from a wide class Euler products have non-coincident in the half-plane $\sigma>1$.
منابع مشابه
Superposition of zeros of distinct L-functions
In this paper we ®rst prove a weighted prime number theorem of an ``o ̈-diagonal'' type for Rankin-Selberg L-functions of automorphic representations of GLm and GLm 0 over Q. Then for m 1, or under the Selberg orthonormality conjecture for mV 2, we prove that nontrivial zeros of distinct primitive automorphic L-functions for GLm over Q are uncorrelated, for certain test functions whose Fourier...
متن کاملZeros of Families of Automorphic L-functions
For many L-functions of arithmetic interest, the values on or close to the edge of the region of absolute convergence are of great importance, as shown for instance by the proof of the Prime Number Theorem (equivalent to non-vanishing of ζ(s) for Re(s) = 1). Other examples are the Dirichlet L-functions (e.g., because of the Dirichlet class-number formula) and the symmetric square L-functions of...
متن کاملReal zeros of quadratic Dirichlet L - functions
A small part of the Generalized Riemann Hypothesis asserts that L-functions do not have zeros on the line segment ( 2 , 1]. The question of vanishing at s = 2 often has deep arithmetical significance, and has been investigated extensively. A persuasive view is that L-functions vanish at 2 either for trivial reasons (the sign of the functional equation being negative), or for deep arithmetical r...
متن کاملLow-lying Zeros of Dihedral L-functions
Assuming the grand Riemann hypothesis, we investigate the distribution of the lowlying zeros of the L-functions L(s, ψ), where ψ is a character of the ideal class group of the imaginary quadratic field Q( √ −D) (D squarefree, D > 3, D ≡ 3 (mod 4)). We prove that, in the vicinity of the central point s = 1/2, the average distribution of these zeros (for D −→ ∞) is governed by the symplectic dist...
متن کاملUnnormalized Differences between Zeros of L-functions
We study a subtle inequity in the distribution of unnormalized differences between imaginary parts of zeros of the Riemann zeta function, which was observed by a number of authors. We establish a precise measure which explains the phenomenon, that the location of each Riemann zero is encoded in the distribution of large Riemann zeros. We also extend these results to zeros of more general L-func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2021
ISSN: ['0022-314X', '1096-1658']
DOI: https://doi.org/10.1016/j.jnt.2020.09.011